

Banha University
 Faculty of Engineering - Shoubra Civil Engineering Department

REINFORCED CONCRETE 1-A

For $2^{\text {nd }}$ Year Civil - $1^{\text {st }}$ Term

Prof. Youssef Hashem, Prof. Ahmed Abd-alFattah, Assoc. Prof. Fouad Bakheet, Assoc. Prof. Taha Awad \& Assoc. Prof. Tarek Sayed

Assignments

- Systematic arrangement of calculations and clear neat sketches are essential;
- Take: $\mathbf{f}_{\mathrm{cu}}=\mathbf{2 5} \mathrm{MPa}, \mathbf{f}_{\mathrm{y}}=\mathbf{2 4 0} \mathrm{MPa}\left(\right.$ for $\Phi \leq \mathbf{8 m m}$), $\mathbf{f}_{\mathbf{y}}=\mathbf{4 0 0} \mathrm{MPa}$ (for $\Phi \geq \mathbf{1 0} \mathbf{~ m m}$), $\Phi \leq \mathbf{2 5} \mathbf{~ m m}$.
- Any missing data may be reasonably assumed according to ECP 2007 \& economical design rules.
[1] For the shown overhanging projected beams, it is required to draw the max. ultimate B.M.D \& S.F.D. and to calculate max. support reaction.

[2] For the shown overhanging beam in elevation under the given service dead \& live loads, it is required to draw max. ultimate B.M.D, S.F.D. \& T.M.D. and to calculate max. support reactions.

[3] For the beams $\left(\mathbf{b x t}=\mathbf{3 0 0 x 8 0 0} \mathbf{~ m m}, \mathbf{t}_{\mathbf{s}}=\mathbf{1 6 0} \mathbf{~ m m}\right)$ in the shown plan of a shed roof under the given slab service dead (D.L.) \& live (L.L.) loads and beam own weight $=\mathbf{5} \mathbf{k N} / \mathbf{m}^{\prime}$, it is required to draw the max. ultimate B.M.D., S.F.D. and T.M.D. and to calculate max. support reactions.

- Systematic arrangement of calculations and clear neat sketches are essential;
- Take: $\mathbf{f}_{\mathrm{cu}}=\mathbf{3 0} \mathrm{MPa}, \mathbf{f}_{\mathrm{y}}=\mathbf{2 4 0} \mathbf{~ M P a}\left(\right.$ for $\Phi \leq \mathbf{8 m m}$), $\mathbf{f}_{\mathbf{y}}=\mathbf{4 0 0} \mathrm{MPa}$ (for $\Phi \geq \mathbf{1 0} \mathbf{~ m m}$), $\Phi \leq \mathbf{2 5} \mathbf{~ m m}$.
- Any missing data may be reasonably assumed according to ECP 2007 \& economical design rules.
[1] a- Calculate M_{u} for R-section (bxt $=250 \mathrm{x} 700 \mathrm{~mm}, \mathrm{~A}_{\mathrm{s}}=4 \Phi 18, \mathrm{~A}_{\mathrm{s}}=0.0, \mathrm{~d}^{\prime}=50 \mathrm{~mm}$)
b- Recalculate M_{u} if $\mathrm{b}=300 \mathrm{~mm}$
c- Recalculate M_{u} if $t=900 \mathrm{~mm}$
d- Recalculate M_{u} if $\mathrm{f}_{\mathrm{cu}}=35 \mathrm{MPa}$
e- Recalculate M_{u} if $\mathrm{f}_{\mathrm{y}}=360 \mathrm{MPa}$
f - Recalculate M_{u} if $\mathrm{A}_{\mathrm{s}}=6 \Phi 18$
g - Recalculate M_{u} if $\mathrm{A}_{\mathrm{s}}{ }^{\prime}=0.3 \mathrm{~A}_{\mathrm{s}}$
h - Recalculate M_{u} if $B=5 b, t_{s}=140 \mathrm{~mm}$
[2] For R-section (bxt $=300 \times 750 \mathrm{~mm}, d^{\prime}=50 \mathrm{~mm}$), draw the relationships of $\mathrm{M}_{\mathrm{u}}-\mathrm{A}_{\mathrm{s}}$, strain ducility $-\mathrm{A}_{\mathrm{s}}$ and $(\mathrm{c} / \mathrm{d})-\mathrm{A}_{\mathrm{s}}$ such that $\mathrm{A}_{\text {smin }} \leq \mathrm{A}_{\mathrm{s}} \leq 1.2 \mathrm{~A}_{\mathrm{sb}}\left(\right.$ Take $\left.\mathrm{A}_{\mathrm{s}}=\mathrm{A}_{\mathrm{smin}}, 0.5 \mathrm{~A}_{\mathrm{smax}}, \mathrm{A}_{\mathrm{smax}}, \mathrm{A}_{\mathrm{sb}}, 1.2 \mathrm{~A}_{\mathrm{sb}}\right)$.
[3] For the following R-sections (bxt $=300 \times 750 \mathrm{~mm}, d^{\prime}=50 \mathrm{~mm}$), calculate M_{u} and strain distribution diagram.
$\mathrm{a}-\mathrm{A}_{\mathrm{s}}=2 \Phi 22$
$\mathrm{b}-\mathrm{A}_{\mathrm{s}}=4 \Phi 22$
c- $\mathrm{A}_{\mathrm{s}}=8 \Phi 22$
$\left.\mathrm{d}-\mathrm{A}_{\mathrm{s}}=6 \Phi 22, \mathrm{~A}_{\mathrm{s}}{ }^{\prime}=2 \Phi 22, \mathrm{~d}_{\text {top }}{ }^{\prime}=40 \mathrm{~mm}\right)$
$\mathrm{e}-\mathrm{A}_{\mathrm{s}}=6 \Phi 22, \mathrm{~A}_{\mathrm{s}}{ }^{\prime}=4 \Phi 22, \mathrm{~d}_{\text {top }}{ }^{\prime}=60 \mathrm{~mm}$
[4] For the following flanged sections $\left(t=850 \mathrm{~mm}, d^{\prime}=50 \mathrm{~mm}\right)$, calculate M_{u} and strain distribution diagram. a- T-section ($\mathrm{t}_{\mathrm{s}}=120 \mathrm{~mm}, \mathrm{~A}_{\mathrm{s}}=6 \Phi 25, \mathrm{~b}=250 \mathrm{~mm}$)
b- L-section ($\mathrm{t}_{\mathrm{s}}=80 \mathrm{~mm}, \mathrm{~A}_{\mathrm{s}}=6 \Phi 25, \mathrm{~b}=250 \mathrm{~mm}, \mathrm{~B}=550 \mathrm{~mm}$)
c- Box-section ($\mathrm{t}_{\mathrm{w}}=\mathrm{t}_{\mathrm{f}}=100 \mathrm{~mm}, \mathrm{~A}_{\mathrm{s}}=8 \Phi 25, \mathrm{~B}=850 \mathrm{~mm}$)
[5] Calculate $\mathrm{M}_{\mathrm{umin}}, \mathrm{M}_{\mathrm{umax}}, \mathrm{M}_{\mathrm{ub}}$ and corresponding strain ductility for the following sections (bxt= $250 x 800 \mathrm{~mm}, \mathrm{~d}^{\prime}=50 \mathrm{~mm}$).
a-R-section $\left(\mathrm{A}_{\mathrm{s}}{ }^{\prime}=0.0\right) \quad$ b- R-section $\left(\mathrm{A}_{s}{ }^{\prime}=0.2 \mathrm{~A}_{\mathrm{s}}\right)$
c- T-section ($\mathrm{t}_{\mathrm{s}}=120 \mathrm{~mm}$)
d- L-section ($\mathrm{t}_{\mathrm{s}}=100 \mathrm{~mm}$)
e- Trapezoidal section ($b_{\text {top }}=750 \mathrm{~mm}$)
f - Triangular section
[6] For a simply supported beam under uniformly distributed service load ($\mathrm{W} \mathrm{kN} / \mathrm{m}$ '), the critical section is singly reinforced R-section ($\mathrm{bxt}=300 \times 700 \mathrm{~mm}$). It is required to:
a- Calculate the largest span $\left(\mathrm{L}_{\max }\right)$ if $\mathrm{W}=40 \mathrm{kN} / \mathrm{m}$ '
b- Calculate W if $\mathrm{L}=7 \mathrm{~mm}, \mathrm{~A}_{\mathrm{s}}=0.5 \mathrm{~A}_{\mathrm{sb}}$
- Systematic arrangement of calculations and clear neat sketches are essential;
- Take: $\mathrm{f}_{\mathrm{cu}}=\mathbf{3 0} \mathrm{MPa}, \mathrm{f}_{\mathrm{y}}=\mathbf{2 4 0} \mathrm{MPa}($ for $\Phi \leq \mathbf{8 ~ m m}), \mathrm{f}_{\mathrm{y}}=\mathbf{4 0 0} \mathrm{MPa}$ (for $\Phi \geq \mathbf{1 0} \mathbf{~ m m}$), $\Phi \leq \mathbf{2 5} \mathbf{~ m m}$.
- Any missing data may be reasonably assumed according to ECP 2007 \& economical design rules.
[1] Design \& draw R-section ($\mathrm{bxt}=300 \mathrm{x} 900 \mathrm{~mm}$) to carry the following ultimate moment:
a- $350 \mathrm{~m} . \mathrm{kN}$
b- $900 \mathrm{~m} . \mathrm{kN}$
c- 1400 m.kN
[2] Design \& draw R-section ($b=300 \mathrm{~mm}$) under $\mathrm{M}_{\mathrm{u}}=900 \mathrm{~m} . \mathrm{kN}$ such that:
a- The section is having the largest effective depth b- The section is having the smallest effective depth
c- Steel ratio $=0.4$ max. steel ratio
$\mathrm{d}-\mathrm{d}_{\text {given }}=0.8 \mathrm{~d}_{\text {minimum }}$
[3] Design \& draw T-section $\left(b=300 \mathrm{~mm}, \mathrm{t}_{\mathrm{s}}=120 \mathrm{~mm}\right)$ under $\mathrm{M}_{\mathrm{u}}=900 \mathrm{~m} . \mathrm{kN}$ such that:
a- Section is having the largest effective depth b- Section is having (1.3*the smallest effective depth)
c- Steel ratio $=0.3$ max. steel ratio

$$
\mathrm{d}-\mathrm{d}_{\mathrm{given}}=1.2 \mathrm{~d}_{\max }
$$

[4] For the shown overhanging projected beams ($\mathbf{b}=\mathbf{3 0 0} \mathbf{m m}, \mathbf{t}_{s}=\mathbf{1 2 0} \mathbf{m m}, \mathrm{d}=0.8 \mathbf{d}_{\text {min }}$ at support $)$, it is required to design \& draw critical sections for max. negative B.M \& max. positive B.M.

[5] For the shown overhanging beam in elevation ($\mathbf{b} \mathbf{x} \mathbf{t}=\mathbf{3 5 0} \mathbf{x ~ 9 0 0 ~ m m , ~} \mathbf{t}_{\mathbf{s}}=\mathbf{1 2 0} \mathbf{~ m m}$) under the given service loads, it is required to design \& draw critical sections for max. negative \& max. positive B.M.

$$
\mathrm{M}_{\mathrm{tDL}}=\mathrm{M}_{\mathrm{tLL}}=4 \mathrm{mkN} / \mathrm{m}^{\prime}
$$

D.L. $=$ L.L. $=72 \mathrm{kN} / \mathrm{m}$

[6] For the beams $\left(\mathbf{b x t}=\mathbf{3 0 0 \times 8 0 0} \mathbf{~ m m}, \mathbf{t}_{\mathbf{s}}=\mathbf{1 6 0} \mathbf{~ m m}\right)$ in the shown plan of a shed roof under the given slab service dead (D.L.) \& live (L.L.) loads and beam own weight $=\mathbf{5} \mathbf{k N} / \mathbf{m}^{\prime}$, it is required to design \& draw critical sections for max. negative B.M \& max. positive B.M.

- Systematic arrangement of calculations and clear neat sketches are essential;
- Take: $\mathbf{f}_{\mathrm{cu}}=\mathbf{3 0} \mathrm{MPa}, \mathbf{f}_{\mathrm{y}}=\mathbf{2 4 0} \mathbf{~ M P a}\left(\right.$ for $\Phi \leq \mathbf{8 m m}$), $\mathbf{f}_{\mathbf{y}}=\mathbf{4 0 0} \mathrm{MPa}$ (for $\Phi \geq \mathbf{1 0} \mathbf{~ m m}$), $\Phi \leq \mathbf{2 5} \mathbf{~ m m}$.
- Any missing data may be reasonably assumed according to ECP 2007 \& economical design rules.
[1] Design a corbel which is projected from a rectangular column (bxt= $300 \times 500 \mathrm{~mm}$) to support the following beam reactions: Dead load= 40 kN , Live load= 120 kN \& Horizontal load= 15 kN .
[2] For the shown overhanging projected beams ($\mathbf{b}=\mathbf{3 0 0} \mathbf{m m}, \mathbf{t}_{s}=\mathbf{1 2 0} \mathbf{m m}, \mathrm{d}=0.8 \mathbf{d}_{\text {min }}$ at support $)$, it is required to design \& draw the critical section for shear (Vertical stirrups, 45^{0} inclined stirrups, 60° inclined stirrups)

[3] For the shown overhanging beam in elevation ($\mathbf{b} \mathbf{x} \mathbf{t}=\mathbf{3 5 0} \mathbf{x ~ 9 0 0} \mathbf{~ m m}, \mathbf{t}_{\mathbf{s}}=\mathbf{1 2 0} \mathbf{~ m m}$) under the given service loads, it is required to design \& draw the critical sections for shear and torsion at supports as Tsections (Vertical stirrups).

[4] For the beams $\left(\mathbf{b x t}=\mathbf{3 0 0 \times 8 0 0} \mathbf{~ m m}, \mathbf{t}_{\mathbf{s}}=\mathbf{1 6 0} \mathbf{~ m m}\right)$ in the shown plan of a shed roof under the given slab service dead (D.L.) \& live (L.L.) loads and beam own weight $=\mathbf{5} \mathbf{~ k N} / \mathbf{m}^{\prime}$, it is required to design \& draw the critical sections for shear and torsion as R-sections.

D.L. $=5.0 \mathrm{kN} / \mathrm{m}^{2}$
L.L. $=1.0 \mathrm{kN} / \mathrm{m}^{2}$

Шس冋سा

- Systematic arrangement of calculations and clear neat sketches are essential;

- Any missing data may be reasonably assumed according to ECP 2007 \& economical design rules.
- For design of sections with uniform steel arrangement try with $1.0 \% \leq \mu \leq 2.0 \%$, while for design of sections with top and bottom steel arrangement try with $0.5 \% \leq \mu \leq 1.5 \%$.
[1] For the shown overhanging projected beams ($\mathbf{b}=\mathbf{3 0 0} \mathbf{m m}, \mathbf{t}_{s}=\mathbf{1 2 0} \mathbf{m m}, \mathrm{d}=0.8 \mathbf{d}_{\text {min }}$ at support $)$, it is required to design \& draw column sections to resist six times the max. reaction as follows:
a- Square tied column
b- Rectangular tied column ($\mathrm{b} \geq 250 \mathrm{~mm}$)
c- Circular tied column
d- Spiral circular column

[2] For the shown overhanging beam in elevation ($\mathbf{b} \mathbf{x} \mathbf{t}=\mathbf{3 5 0} \mathbf{x ~ 9 0 0} \mathbf{~ m m}, \mathbf{t}_{\mathbf{s}}=\mathbf{1 2 0} \mathbf{~ m m}$) under the given service loads, it is required to design \& draw square sections to resist ten times max. reactions at A\&B.

$$
\mathrm{M}_{\mathrm{tDL}}=\mathrm{M}_{\mathrm{tLL}}=4 \mathrm{mkN} / \mathrm{m}^{\prime}
$$

[3] Calculate the ultimate loads for columns cross sections shown in the figure using interaction diagrams

[4] Design R-section for the following cases ($\mathrm{b}=250 \mathrm{~mm}-\mathrm{T}$ and N in kN and M in kN .m) (Using the interaction diagrams for eccentric compression)

	T	00 \& $\mathrm{T}_{\text {LI }}=1000$	and $\mathrm{M}_{\text {D.L }}=0$	
b-	Comp. Force	$\mathrm{N}_{\mathrm{D} . \mathrm{L}}=500$ \& $\mathrm{N}_{\text {L. }}=1000$	and $\mathrm{M}_{\text {D.L }}=$	\& $\mathrm{M}_{\mathrm{L} . \mathrm{L}}=$
c-	Tension Force	$\mathrm{T}_{\text {D.L }}=500$ \& $\mathrm{T}_{\text {L.L }}=1000$	and $\mathrm{M}_{\text {D.L }}=50$	\& $\mathrm{M}_{\mathrm{L} . \mathrm{L}}=100$
d-	Comp. Force	$\mathrm{N}_{\text {D.L }}=1500$ \& $\mathrm{N}_{\text {L. }}=1500$	and $\mathrm{M}_{\text {D.L }}=100$	\& $\mathrm{M}_{\mathrm{L} . \mathrm{L}}=150$
e-	Tension Force	$\mathrm{T}_{\mathrm{D} . \mathrm{L}}=100$ \& $\mathrm{T}_{\mathrm{L} . \mathrm{L}}=200$	and $\mathrm{M}_{\text {D.L }}=1000$	\& $\mathrm{M}_{\mathrm{L} . \mathrm{L}}=1000$
f-	Comp. Force	$\mathrm{N}_{\mathrm{D} . \mathrm{L}}=100$ \& $\mathrm{N}_{\mathrm{L} . \mathrm{L}}=200$	and $\mathrm{M}_{\mathrm{D} . \mathrm{L}}=1000$	\& $M_{L . L}=1000$

[5] Design a circular column section for the following cases:
a- Comp. Force $N_{\text {D.L }}=500 \mathrm{kN} \mathrm{N}_{\mathrm{L} . \mathrm{L}}=1500 \mathrm{kN}$ and $\mathrm{M}_{\mathrm{D} . \mathrm{L}}=100.0 \mathrm{kN} . \mathrm{m} \mathrm{M}_{\mathrm{L} . \mathrm{L}}=200.0 \mathrm{kN} . \mathrm{m}$
b- Comp. Force $N_{\text {D.L }}=500 \mathrm{kN} \mathrm{N}_{\mathrm{L} . \mathrm{L}}=1500 \mathrm{kN}$ and $\mathrm{M}_{\mathrm{D} . \mathrm{L}}=200.0 \mathrm{kN} . \mathrm{m} \mathrm{M}_{\mathrm{L} . \mathrm{L}}=500.0 \mathrm{kN} . \mathrm{m}$

