

Banha University Faculty of Engineering - Shoubra Civil Engineering Department

REINFORCED CONCRETE 1 - A

For 2nd Year Civil – 1st Term

Prof. Youssef Hashem, Prof. Ahmed Abd-alFattah, Assoc. Prof. Fouad Bakheet, Assoc. Prof. Taha Awad & Assoc. Prof. Tarek Sayed

Assignments

BANHA UNIVERSITY FACULTY OF ENGINEERING (SHOBRA) DEPARTMENT OF CIVIL ENGINEERING

- Systematic arrangement of calculations and clear neat sketches are essential;
- Take: $f_{cu} = 25$ MPa, $f_y = 240$ MPa (for $\Phi \le 8$ mm), $f_y = 400$ MPa (for $\Phi \ge 10$ mm), $\Phi \le 25$ mm.
- Any missing data may be reasonably assumed according to ECP 2007 & economical design rules.

[1] For the shown overhanging projected beams, it is required to draw the max. ultimate B.M.D & S.F.D. and to calculate max. support reaction.

[2] For the shown overhanging beam in elevation under the given service dead & live loads, it is required to draw max. ultimate B.M.D, S.F.D. & T.M.D. and to calculate max. support reactions.

[3] For the beams (**bxt** = **300x800 mm**, t_s =**160 mm**) in the shown plan of a shed roof under the given slab service dead (**D.L.**) & live (**L.L.**) loads and **beam own weight**= **5** kN/m', it is required to draw the max. ultimate B.M.D., S.F.D. and T.M.D. and to calculate max. support reactions.

- Systematic arrangement of calculations and clear neat sketches are essential;
- Take: $f_{cu} = 30$ MPa, $f_y = 240$ MPa (for $\Phi \le 8$ mm), $f_y = 400$ MPa (for $\Phi \ge 10$ mm), $\Phi \le 25$ mm.
- Any missing data may be reasonably assumed according to ECP 2007 & economical design rules.
- [1] a- Calculate M_u for R-section (bxt = 250x700 mm, A_s= 4 Φ 18, A_s= 0.0, d'= 50mm)
 - b- Recalculate M_u if b = 300 mm
 - c- Recalculate M_u if t = 900 mm
 - d- Recalculate M_u if $f_{cu} = 35$ MPa
 - e- Recalculate M_u if $f_y = 360$ MPa
 - f- Recalculate M_u if $A_s = 6\Phi 18$
 - g-Recalculate M_u if $A_s' = 0.3 A_s$
 - h- Recalculate M_u if B= 5b, $t_s = 140 \text{ mm}$
- $\label{eq:constraint} \begin{array}{l} \mbox{[2] For R-section (bxt = 300x750 mm, d'=50 mm), draw the relationships of $M_u A_s$, strain ducility $-A_s$ and $(c/d) A_s$ such that $A_{smin} \leq A_s \leq 1.2 A_{sb}$ (Take $A_s = A_{smin}$, 0.5 A_{smax}$, A_{smax}, A_{sb}, $1.2 A_{sb}$). \end{array}$
- [3] For the following R-sections (bxt = 300x750 mm, d'=50 mm), calculate M_u and strain distribution diagram.
 - a- $A_s = 2\Phi 22$ c- $A_s = 8\Phi 22$ e- $A_s = 6\Phi 22$, $A_s' = 4\Phi 22$, $d_{top}' = 60mm$ b- $A_s = 4\Phi 22$ d- $A_s = 6\Phi 22$, $A_s' = 2\Phi 22$, $d_{top}' = 40mm$)
- [4] For the following flanged sections (t= 850 mm, d'=50 mm), calculate M_u and strain distribution diagram. a- T-section (t_s= 120mm, A_s= 6 Φ 25, b= 250mm)
 - b- L-section (t_s = 80mm, A_s = 6 Φ 25, b= 250mm, B= 550mm)
 - c-Box-section ($t_w = t_f = 100$ mm, $A_s = 8\Phi 25$, B = 850mm)

[5] Calculate M_{umin}, M_{umax}, M_{ub} and corresponding strain ductility for the following sections (bxt= 250x800mm, d'=50 mm).

a- R-section ($A_s = 0.0$)	b- R-section ($A_s = 0.2 A_s$)
c- T-section ($t_s = 120$ mm)	d- L-section ($t_s = 100 \text{mm}$)
e- Trapezoidal section ($b_{top} = 750$ mm)	f- Triangular section

[6] For a simply supported beam under uniformly distributed service load (W kN/m'), the critical section is singly reinforced R-section (bxt = 300x700 mm). It is required to:

a- Calculate the largest span (L_{max}) if W= 40 kN/m'

b- Calculate W if L= 7mm, $A_s = 0.5 A_{sb}$

BANHA UNIVERSITY FACULTY OF ENGINEERING (SHOBRA) Civil Engineering Dept.

- Systematic arrangement of calculations and clear neat sketches are essential;
- Take: $f_{cu} = 30$ MPa, $f_y = 240$ MPa (for $\Phi \le 8$ mm), $f_y = 400$ MPa (for $\Phi \ge 10$ mm), $\Phi \le 25$ mm.
- Any missing data may be reasonably assumed according to ECP 2007 & economical design rules.

[1] Design & draw R-section (bxt= 300x900mm) to carry the following ultimate moment:a- 350 m.kNb- 900 m.kNc- 1400 m.kN

[2] Design & draw R-section (b= 300mm) under M_u = 900 m.kN such that: a- The section is having the largest effective depth c- Steel ratio = 0.4 max. steel ratio b- The section is having the smallest effective depth d- d_{given} = 0.8 d_{minimum}

[4] For the shown overhanging projected beams (b=300mm, $t_s=120$ mm, $d=0.8d_{min}$ at support), it is required to design & draw critical sections for max. negative B.M & max. positive B.M.

[5] For the shown overhanging beam in elevation (b x t = $350 \times 900 \text{ mm}$, t_s=120 mm) under the given service loads, it is required to design & draw critical sections for max. negative & max. positive B.M.

[6] For the beams (bxt = $3\overline{00x800}$ mm, t_s =160 mm) in the shown plan of a shed roof under the given slab service dead (D.L.) & live (L.L.) loads and beam own weight= 5 kN/m', it is required to design & draw critical sections for max. negative B.M & max. positive B.M.

- Systematic arrangement of calculations and clear neat sketches are essential;
- Take: $f_{cu} = 30$ MPa, $f_y = 240$ MPa (for $\Phi \le 8$ mm), $f_y = 400$ MPa (for $\Phi \ge 10$ mm), $\Phi \le 25$ mm.
- Any missing data may be reasonably assumed according to ECP 2007 & economical design rules.
- [1] Design a corbel which is projected from a rectangular column (bxt= 300x500mm) to support the following beam reactions: Dead load= 40 kN, Live load= 120 kN & Horizontal load= 15 kN.

[2] For the shown overhanging projected beams (**b=300mm**, **t**_s=120mm, d=0.8d_{min} at support), it is required to design & draw the critical section for shear (Vertical stirrups, 45^0 inclined stirrups, 60^0 inclined stirrups)

[3] For the shown overhanging beam in elevation (b x t = $350 \times 900 \text{ mm}$, t_s=120 mm) under the given service loads, it is required to design & draw the critical sections for shear and torsion at supports as T-sections (Vertical stirrups).

[4] For the beams (bxt = 300x800 mm, t_s =160 mm) in the shown plan of a shed roof under the given slab service dead (D.L.) & live (L.L.) loads and beam own weight= 5 kN/m', it is required to design & draw the critical sections for shear and torsion as R-sections.

BANHA UNIVERSITY FACULTY OF ENGINEERING (SHOBRA) Civil Engineering Dept.

- Systematic arrangement of calculations and clear neat sketches are essential;
- Take: $f_{cu} = 30$ MPa, $f_y = 240$ MPa (for $\Phi \le 8$ mm), $f_y = 400$ MPa (for $\Phi \ge 10$ mm), $\Phi \le 25$ mm.
- Any missing data may be reasonably assumed according to ECP 2007 & economical design rules.
- For design of sections with uniform steel arrangement try with 1.0 % $\leq \mu \leq 2.0$ %, while for design of sections with top and bottom steel arrangement try with 0.5 % $\leq \mu \leq 1.5$ %.

[1] For the shown overhanging projected beams (b=300mm, $t_s=120$ mm, $d=0.8d_{min}$ at support), it is required to design & draw column sections to resist six times the max. reaction as follows:

- a- Square tied column
- c- Circular tied column

b- Rectangular tied column (b \geq 250mm) d- Spiral circular column

[2] For the shown overhanging beam in elevation (**b** x t = 350 x 900 mm, t_s=120 mm) under the given service loads, it is required to design & draw square sections to resist ten times max. reactions at A&B.

[4] Design <u>**R-section**</u> for the following cases (b = 250 mm- T and N in kN and M in kN.m) (Using the interaction diagrams for eccentric compression)

a-	Tension Force	$T_{D.L} = 50$	0 & $T_{L.L} = 1000$	and $M_{D,L} = 0$	$\& M_{L.L} = 0$
b-	Comp. Force	$N_{D.L} = 500$) & $N_{L.L} = 1000$	and $M_{D,L} = 0$	$\& M_{L.L} = 0$
C-	Tension Force	$T_{D.L} = 50$	0 & $T_{L.L} = 1000$	and $M_{D,L} = 50$	$\& M_{L.L} = 100$
d-	Comp. Force	$N_{D.L} = 150$	$0 \& N_{L.L} = 1500$	and $M_{D.L} = 100$	$\& M_{L.L} = 150$
e-	Tension Force	$T_{D.L} = 10$	$0 \& T_{L.L} = 200$	and $M_{D.L} = 1000$	$\& M_{L.L} = 1000$
f-	Comp. Force	$N_{D.L} = 10$	$0 \& N_{L.L} = 200$	and $M_{D.L} = 1000$	$\& M_{L.L} = 1000$

[5] Design a circular column section for the following cases:

a- Comp. Force $N_{D.L} = 500 \text{ kN}$ $N_{L.L} = 1500 \text{ kN}$ and $M_{D.L} = 100.0 \text{ kN.m}$ $M_{L.L} = 200.0 \text{ kN.m}$ b- Comp. Force $N_{D.L} = 500 \text{ kN}$ $N_{L.L} = 1500 \text{ kN}$ and $M_{D.L} = 200.0 \text{ kN.m}$ $M_{L.L} = 500.0 \text{ kN.m}$